کارایی مدل فازی در پتانسیل سیل خیزی حوضه زنگمار

تاریخ دریافت: ۱۳۹۰/۱/۲۸
تاریخ پذیرش: ۱۳۹۰/۶/۱۸

چکیده

سیلاب از جمله بیماری‌های طبیعی شناخته شده می‌باشد که خسارت‌ها و جانی فراوانی به همه‌اندیان این پدیده با کمک شناختی مناطق سیل خیز و مدیریت مناسب قابل کنترل می‌باشد. هدف این مقاله از ارزیابی و بهبود خطر سیل در حوضه زنگمار در شهرستان ماکو با استفاده از مدل فازی می‌باشد به این منظور لایه‌های اطلاعاتی مربوط به شبیه‌سازی، اندازه‌گیری و پیش‌بینی، کاربری اراضی، خاک، شاخص‌های دیگر، فاصله از رود، تراکم NDVI زهکشنی و شاخص شخصی شده شد و برای آزمودن کارایی مدل فازی و انتخاب عملکرد مناسب‌ترین راه‌های پیشنهاد شده. در نهایت بهبود خطر سیل‌خیزی نواحی به خطر بسیار بالا در بالادست و شمال حوضه قرار داده. اغلب نواحی با خطر سیل‌خیزی بسیار بالا در دامنه‌های مجدد و سیل‌خیزی و در شیب‌های بن‌وحی درصد که اغلب مناطق کوهستانی است قرار دارد. ارتفاع‌های متوسط گلبلاً بین ۱۲۰۰–۱۹۰۰ متر می‌باشد.

کلید واژه‌ها: پتانسیل، سیل‌خیزی، فازی، زنگمار، ماکو.

E-mail:Ayla_gholizadeh@yahoo.com

1- کارشناس ارشد زمین‌شناسی، دانشگاه خوارزمی. (نویسنده مسئول).
2- عضو هیأت علمی دانشگاه خوارزمی.
3- دانشجوی دکتری اولیه، دانشگاه خوارزمی.
4- کارشناس برنامه‌ریزی شهری، دانشگاه پیام نور.
مقدمه

سیل‌یکی از بزرگ‌ترین مخاطرات طبیعی است که همه‌ساله خسارت‌های سنگینی را به جوامع مختلف تحمل می‌کند. با توجه به اینکه سیلاب‌های بی‌سابقه این است که در استحکام عوامل طبیعی بوده اما دخالت‌های بشری از قبل تغییر کاربری زمین، تخریب پوشش گیاهی و خاک، تجاوز در حرم رودخانه‌ها بدون شناخت و توجه به شرایط هیدرولوژیکی و دینامیکی رودخانه موجب افزایش خسارات جانی و مالی و زیست‌ناپای می‌شود که برای موسسه توسط را با مشکلاتی مواجه می‌شود. در این راستا، در این مطالعه، بهترین بهره‌برداری به سیلاب سیل‌پردازی یکی از پتانسیل‌های جهت بهبود راه حل‌ها و کنترل سیلاب مطالعه و تحقیقات جامعی باید تدوین گردد که از جمله اقدامات تحت منطقی و مدرنیتی شناسایی خط سیل در نواحی سیل خیابانی های از منطقه که تحت تاثیر شدید به فلزت می‌گردد. این امر به بهبود وضعیت و راهبردهای سیلاب در لحاظ مورد مطالعه می‌باشد. مطالعه مداوم در حوزه‌های سیل‌پردازی می‌باشد. می‌توان به سیلاب 7 آگوست (2008) اشاره کرد که به دلایل هماهنگ و پیش‌بینی ریزگردهای که باعث آسیب و افزایش ۵۰۰ درصدی به مقادیر ۲۰ میلی‌متر در شهر ماکو باعث ایجاد خسارت‌های بزرگی می‌باشد. به طور کلی، ۲۵ واحد مسکونی، ۴۰۳ دستگاه خودرو، ۸۵ واحدهای آب گرفتنگی و ایجاد مسئولیتی ۱۵۰ خانوار و تخریب ۲۰ واحد مسکونی شد. این جریان ۲۵ نفر مصدوم و ۴ نفر قطعی خود را از دست دادند. همچنین پارسیلگری ریزگیری سالهای (2008 و 2012) که مشهو(2015) گرفتنگی معدب‌عمومی در ماکو شنگ قشع بودن و قطع سیلاب در این شهر می‌باشد.

- هدف پژوهش

در این پژوهش می‌خواهد تا به این سوال پاسخ دهد که: کدام پهن پایه در حوزه زنجیره دارای بیش‌ترین خطر رخداد سیلاب می‌باشد؟ در توجه به اینکه هدف از این مطالعه تعیین نواحی ای بیش‌ترین قابل‌یابی رخداد سیلاب با استفاده از مدل‌های زنجیره‌فرمولولوژیکی می‌باشد. جهت پاسخ به این سوال از مدل‌های ناپایی استفاده شده است. مدل فازی به‌وسیله لفظی عضو‌های در سال (1975) عرضه شده است. نظریه فازی نظریه‌ای برای اقدام در شرایط عدم اطمینان است. این نظریه مفاهیم و متغیرهای نادیق و مهم را به شکل ریاضی در می‌آورد (Momeni, 2011: 187). این مدل به این امر که بپدیده‌ی مفهوم سیلاب تحت تاثیر عوامل بسیاری قرار دارد که تاثیر احتمالی و
پیشنهاد پژوهش

مطالعات داخلی و خارجی سیل‌سازی در ارتباط با سیلاب و زمینهای مختلف مرتبط با آن صورت گرفته است. برنامه تست در مطالعه چنین پدیده‌هایی استفاده از مدل بولین ۶ که لازم به آن داده‌های دقیق و کمی است، منطقی به نظر نمی‌رسد. به همین دلیل در این پژوهش از مدل فازی جهت بهبودی سیلاب در حوضه زنجمار استفاده شده است.

Gashe et al (2011: ۱۷۹) به ارزیابی خطر سیل با استفاده از سیستم اطلاعات جغرافیایی و سنگین از دور در حوضه آبریز گرمایی از این پدیده و نتیجه گرفتند که مناطق پایین‌دست حوضه و زمین‌هایی که کاربردی آنها تغییر کرده در محدوده خطر سیل‌سازی پدشیار استفاده، از جمله کاربردی که در زمینه سیلاب در داخل کشور انجام شده، می‌تواند بر موارد زیر اشاره نمود.

در پیش‌بینی سیل‌سازی خیزی حوزه آب‌یابی اختیار آبی با استفاده از روش سلسله مراتبی Malekian et al (2012: ۳۱) به این ترتیب رسیدند که برای جلوگیری از رخداد سیلاب‌های در مرحله نخست عوامل مؤثر در پیش‌بینی
پتانسیل خیزی را شناسایی کرد. گاناویتال و CN و AHP با استفاده از مدل هیدرولوژیکی Ghanavati et al (2014: 67) در محیط GIS مطالعهای پتانسیل خیزی حوضه رودخانه با کلم برداشتند و نقشه پهن‌بندی پتانسیل خیزی حوضه را با دوره بارگذاری‌های مختلف تهیه کردند. (2013: 59) جهت بررسی خطر سیل خیزی در زیر حوضه‌های استان آذربایجان غربی با استفاده از روش استراحت‌های طبقه‌بندی رودخانه‌های استان آذربایجان غربی برداشتند سپس برای هر یک از طبقه‌ها یک پهن پویا محدوده حصر سیل در محیط GIS تعیین کردند و سرانجام با استفاده از الگو وقوع سیل در زیر حوضه‌ها شدت خطر سیل‌پذیری هر حوضه مشخص شد و به این ترتیب رسیدند که زیر حوضه‌های زنجگران در خطر سیل‌پذیری شدید نگذشت. (051: 105) در روی‌العالی‌های کاران برداشتند و ضمن تهیه نقشه پهن‌بندی خطر سیل‌های محدوده و میزان اراضی کشاورزی و مناطق بی‌سیل‌هایی که در صورت وقوع سیل‌های خطر خواهد بود، بررسی میزان خطر سیل‌هایی بررسی‌های انجام دادند. (17: 1201) برداشتند. Amirahmadi et al (2011: 37) در پژوهش تحت عنوان پهن‌بندی حوضه دیور به نظر تولید سیل‌های با استفاده به موفقیت‌های زئومورفولوژی تحلیل سیل خیزی حوضه متعدد از ساختمان زئومورفولوژی حوضه است و ساخته‌های، مهم‌ترین بنیاد برای کنکار دارد. (17: 1201) برداشتند. دلیل اندازه‌گیری دیور می‌باشد و با توجه به اینکه پدیده‌های مهم‌ترین مخاطره در حوضه مورد مطالعه می‌باشد و تاکنون هیچ مطالعه جامع در این مورد در سطح منطقه صورت نگرفته و به‌پایان بهره‌مندی خطر سیل‌های در حوضه زنجگران ضروری نمی‌باشد.

فصل نامه علمی-پژوهشی فضای جغرافیایی سال هفتم شماره 40 زمستان 1396

منطقه مورد مطالعه

این حوضه واقع در ۵۰-۵۳۸، ۲۷-۲۳۰ و ۴۴-۹۶ درجه شمالی و ۴۰-۶۵۰ درجه شرقی مربع از خاک کشور را به‌خود اختصاص داده است. این حوضه از نظر شرایط طبیعی واریوای آتاسیون و واقع در اقلیم کوهستانی است و با کلیه حوضه‌های زنجگران سرد است و نیز از زیر حوضه‌های ارس و همچنین حوضه‌های پهناور و بالعال حوضه آبیاری ۴۰۸ متری شاخص می‌باشد. حداکثر ارتفاع حوضه ۳۰۴ متر در انتهای غربی و ۳۰۰ متر در انتهای شرقی است. حوضه مورد مطالعه در شکل مشترک بیده‌ای را پیش‌بینی کردند. در تحلیل شبیه‌سازی و اثبات این نمودار با استفاده از روش مساله سیل‌پذیری، تراکم هسته‌کردن کل حوضه ۱/۵ زمان تعادل ۱۲ ساعت و ۳۰ دقیقه، شبیه‌سازی متوسط با استفاده از روش هورتون ۴۰ درصد و ارتفاع متوسط حوضه ۱۰۰۰ متر محاسبه شده است. رزیم رودخانه زنجگران از نوع زئیم برفی مخلوط که خود قسمتی از زئیم برفی کوهستان به‌حساب می‌آید، پیش‌بینی کردند. حداکثر جریان برای کوهستان برفی حداکثر آن در مرداد و شهریور اتفاق می‌افتد. بدین ترتیب سلسله رودخانه زنجگران به حدود ۴/۰۵ متر مکعب در ثانیه می‌رسد. از نظر زمین‌شناسی منطقه مورد مطالعه در دوره تریاسی در نتیجه فشارهای وارده بر قفقاز و آب‌سایچ تغییر شکل گرفته است. (شکل ۱) موفقیت حوضه مورد مطالعه را در سطح کشور و استان نشان می‌دهد.
کارایی مدل فازی در پتانسیل سیل خیسی حوضه زنگمار

مواد و روش‌ها
- داده‌ها و لایه‌های مورد استفاده

در این تحقیق ابتدا عوامل موثر در پنهان‌بندی پتانسیل سیل خیسی از طریق مطالعات کتابخانه‌ای و با نظر کارشناسان شناسایی شدند. پس از شناسایی معیارها داده‌های مورد نیاز از منابع مختلف جمع‌آوری و به ترتیب هر یک از معیارها و لایه‌های اطلاعاتی نقشه توبوگرافی ۱:۵۰۰۰، نقشه زمین‌شناسی ۱:۱۰۰۰۰، نقشه قابلیت اراضی ۱۵۰۰۰، تصویر ماهواره‌ای IRS-LISS III و انسجام‌کلیه اطلاعاتی، تحقیق و دیگر امدادگانی از طریق نرم‌افزار ArcGIS و مکانیسم به‌کار رفتن است. ابتدا لایه‌های DEM حوضه بر اساس نقشه توبوگرافی حوضه تهیه گردید و سپس با کمک این لایه، لایه‌های سه‌بعدی (شکل ۲)، لایه بافت‌پذیر (شکل ۳)، لایه تل-runner (شکل ۴) و ارتفاع (شکل ۵) با استفاده از نرم‌افزار ArcGIS آماده گردید. لایه تراکم زهکشی (شکل ۶) و فاصله از آب‌های (شکل ۷) نیز بر مبنای لایه آب‌های ArcGIS استخراج شده از نقشه توبوگرافی تهیه گردیده است. جهت تهیه لایه سگ‌شناسی از نقشه زمین‌شناسی و جهت تهیه لایه شاخه‌های خاک‌شناسی (شکل ۸) از نقشه قابلیت اراضی بهره‌برداری، همچنین با کمک تصویر ماهواره‌ای لایه شاخه‌های NDVI تهیه گردید. جهت آماده‌سازی لایه بارش، ابتدا آمار بارش ایستگاه‌های حوضه زنگمار از سازمان هواشناسی با دوره آماری ۲۰ ساله تهیه شد و سپس از طریق همبستگی (رابطه ۱) رابطه خطی این پارامترها با ارتفاع DEM به‌دست آمد و در نهایت در نرم‌افزار SPSS با اعمال روش گرایش‌بندی

رابطه (۱): رابطه همبستگی بارش و ارتفاع

شکل ۱: نقشه موقعیت منطقه مورد مطالعه
\[y = 68.56 + 0.158x \]

\[R = 0.889 \]
کارایی مدل فازی در پتانسیل سیل خیزی حوضه زنگمار

شکل 6: نقشه تراکم زهکشی
شکل 7: نقشه فاصله از ابراهه
شکل 8: نقشه پوشش زمین
شکل 9: نقشه خاکشناسی
شکل 10: نقشه برداشت
شکل 11: نقشه سگشناسی
فصلنامه علمی-پژوهشی فضای جغرافیایی، سال هفدهم، شماره‌ی ۶۰، دی ۱۳۹۶

شکل 12: نقشه شاخص پوشش گیاهی (NDVI)

- مدل فازی مدل

فازی بر منطق فازی استوار بوده که اساسا به منظور اقدام در شرایط ایجاد ارائه گردیده است. هر فرد هر زمان در مجموعه‌های مختلف ویلی به درجات منفوقی عضویت دارد. درجات عضویت مقادیر بین صفر و یک و نیز خود این (Van Alphen, 2000: 1706) مجموعه فازی توسط تابع عضویت بیان می‌شود که این تابع عضویت درجه تعلق اعضای مجموعه را با یک عدد حیضی بن [۱، ۰] نشان می‌دهد. تابع عضویت برابر (۱) نشاندهنده عضویت کامل در مجموعه و مقدار (۰) نشاندهنده عدم عضویت کامل عنصر در مجموعه است; بنابراین قبل از اجرای مدل فازی نیاز است که برای هریک از لایه‌های اشکال شده در فاکتور عضویت تعیین گردد و ارزش لایه‌ها در بازه‌ای بین [۱، ۰] قرار گیرد، بدین منظور لایه رابطه هر یک از پارامترها با سپل‌خیز مورد بررسی قرار گرفته و سپس توابع مربوط به آنها تعیین شد که در این مطالعه از تابع لازم و تابع خطی استفاده شده است (شکل‌های ۱۳ و ۱۴). تابع لازم (تابع ۲) تابعی است که برای حالات خطي افزاینده به کار می‌رود. نقطه میانی به‌وسیله کاربر تعیین شده، عضویت فاژی ۰/۰ به خود می‌گیرد. ارقام بالاتر از نقطه میانی به مسافت ١ می‌کند و ارقام پایین‌تر از نقطه میانی به مسافت عضویت صفر می‌کنند؛ که برای پارامترهای کاربری اراضی، خاکشناسی، سنجش‌سازی، انحلال پلاستیک، بارش، تعیین شد. تابع خطی دو حالت دارد:

- حالت اول شکل (خط آبی): در اجرای دستور در حالت کمیته و بینی‌های برای داده‌ها در نظر می‌گیرد. تمامی ارزش‌های کم‌تر از عدد کمیته داده به سیستم عضویت صفر به‌خود می‌گیرند و تمامی ارزش‌های بزرگ‌تر از
کارایی مدل فازی در پتانسیل سیل خیسی حوضه زنگمار

عدد بیشینه داده شده، عضویت 1 می‌گردد. اعداد مابین کمینه و بیشینه نیز عضویت صعودی صفر تا یک به خود می‌گردد.

- حالت دوم (خط فرم) قرینه حالت اول است. تمامی ارزش‌های کمتر از عدد کمینه عضویت 1 و تمامی ارزش‌های بیشتر از عدد بیشینه عضویت صفر می‌گردد. لذا پارامترهای انحنای پروفیل، NDVI، تراکم زهکشی، فاصله از آب‌راه، شبیب و ارتقاء ناتب خلی تعیین شد.

![شکل 13: نابع خطی 8 شکل فازی و قرنیه آن](image)

![شکل 14: نابع لارج فازی](image)

عامل شبیب (شکل 2) با تولید رواناب رابطه مستقیم دارد، بعنی هر چه شبیب بیشتر باشد رواناب شبیب تری تولید می‌شود. انحنای پروفیل (شکل 3) نشانه دهنده دامنه‌های کار و کوز می‌باشد و انحنای پلاین متزیک (شکل 4) تعیین کننده دره‌ها و سنتع‌های بانبراین دامنه‌های کار و خط الگو و سنتع سطوح مستند برای سیل خیزی می‌باشد. ارتفاع (شکل 5) از عوامل بسیار مهم در پیدایش هیدرولوژیکی می‌باشد، اهمیت این عامل به دلیل تاثیری است که بر روی تغییرات دما و بارش دارد. همچنین مناطق مرتفع با شبیب زیاد قدرت رواناب را افزایش می‌دهد و بانبراین این عامل با سیل خیزی رابطه مستقیم دارد. تراکم زهکشی از تقسیم طول آب‌راه‌ها بر مساحت به‌دست می‌آید این پارامتر با پدیده سیل خیزی دارای رابطه معکوس می‌باشد (شکل 6). فاصله از آب‌راه از دیگر پارامترهای موثر بر سیل خیزی می‌باشد. هر چه فاصله از آب‌راه در حوضه کاهش یابد خط سیل خیزی کاهش می‌یابد (شکل 7).

در نهایت کاربری حوضه (شکل 8) نیز به هر یک از کاربری‌ها با توجه به تاثیر موقعیت و شرایط‌شناسی بر سیلاب امتیازدهی شده است. این امتیازدهی به‌گونه‌ای است که با سیلاب رابطه مستقیم دارد. لایه خاک‌شناسی (شکل 9) بر
اساس میزان نفوذپذیری خاک، هر چه نفوذپذیری خاک بیشتر باشد، روانب کمتری تولید می‌شود. بنابراین این پارامتر با سیل خیزی رابطه معکوس دارد. شرایط لیتولوژیک منطقه (شکل 10) از عوامل مؤثر بر روانب می‌باشد و لیتولوژی مقاوم به تولید رواناب بیشتر متری می‌گردد. امتیازدهی به عامل لیتولوژی یک گونه‌ای است که با تولید رواناب رابطه مستقیم دارد. عامل بارش با تولید رواناب رابطه مستقیم دارد و واقع در نواحی با حجم بارش بالاتر، مقدار رواناب تولید شده بیشتر می‌باشد (شکل 11). شاخص NDVI (شکل 12) نشان دهنده تراکم پوشش گیاهی می‌باشد و رابطه معکوس با سیل خیزی و تولید رواناب دارد. در واقع مقدار کم این شاخص نشان دهنده فقر پوشش گیاهی و قابلیت بالا در تولید رواناب می‌باشد. پس از تعيین نوع رابطه هر یک از پارامترها با پدیده سیلاب، برای هر یک لايه‌های وابسته به این پارامترها، توانای عضویت (شکل‌های 13 و 14) تعیین و به لايه‌ها عملی می‌گردد. سپس لایه‌ها وارد مدل فازی می‌گردد.

برای اجرای تکنیک فازی (شکل 15) در این مطالعه از عملگرهای جمع چربی، ضرب چربی و گاما استفاده گردیده است. عملگر ضرب چربی باعث می‌شود تا اعداد مجموعه‌ها به صمت صفر و عملگر جمع چربی موجب می‌گردد تا اعداد به صمت یک می‌نیابند. لذا از عملگر گاما جهت تعدیل حساسیت خیلی بالای عملگر ضرب چربی و فاقد خیلی کم عملگر جمع چربی شکل گرفته است. مقدار گاما تعدیل کننده بین صفر و یک است که مقدار آن از طریق فضایی کارشناسی تعیین می‌شود. گامای ضرب معادل ضرب فازی و گامای یک معادل جمع فازی است.

(Dadrasisabzevari, 2009: 233)
کارایی مدل فازی در پتانسیل سیل خیسی حوضه زنگمار

شکل ۱۵: مراحل شکل‌گیری مدل فازی در مطالعه سیلاب
یافته‌ها و بحث
در مدل فازی پس از اعمال توابع به هر یک از لایه‌ها (شکل‌های ۱۶ تا ۲۵)، مقدار ارزش هر یک از لایه‌ها در پایان این تابع، در محدوده بین صفر و یک قرار گرفته است. به طوری که سطوح با بیشترین تاثیر در رخداد رواناب بالاترین مقدار عددی (۱) و سطوح با کمترین تاثیر پدرین مقدار عددی (۰) را پیدا می‌کنند.

شکل ۱۷: لایه انحلای پرروفیل فازی شده

شکل ۱۸: لایه ارتفاع فازی شده

شکل ۱۹: لایه انحلای پلاستیمتریک فازی شده

شکل ۲۰: لایه انحلای پلاستیمتریک فازی شده
کارایی مدل فازی در پتانسیل سیل خیسی حوضه زنگمار

شکل 21: لاشه فاصله از آبراهه فازی شده
شکل 22: لاشه تراکم زهکشی فازی شده
شکل 23: لاشه خاکسپاسی فازی شده
شکل 24: لاشه کاربری اراضی فازی شده
شکل 25: لاشه سنج شناسی فازی شده
پس از اعمال توافع لایه‌ها مطابق با (شکل 15) در نرم‌افزار ArcGIS عملکردی چهار گروه جنبی و ضرب چهار بر لایه‌ها اعمال گردیدند. (شکل 27 نشانه‌به دست آمده به‌وسیله عملکرد جمع چهار فازی و (شکل 28) نشانه‌به دست آمده به‌وسیله عملکرد ضرب چهار فازی را نشان می‌دهد، مقایسه این دو نشان با هم نشان می‌دهد که در نشان به‌وسیله عملکرد جمع چهار در مقایسه با نشان به‌وسیله عملکرد ضرب چهار سطح با خطر وسعت وسعت بیشتری دارد. در حالی که سطوح با خطر کم وسعت کمتری دارند.

بنابراین جهت به‌دست آوردن نشانه‌بندي سطح و تعیین نشانه‌بندي به‌دست آمده بر اساس عملکردی جمع چهار و ضرب چهار، از عملکردی گام 9/0، گام 7/0 و گام 5/0 استفاده شده است. در نهایت تمامی
کارایی مدل فازی در پتانسیل سیل خیسی حوضه زنگمار

نقشه‌ها در بنح سطح بر اساس شکستگی‌های طبیعی طبقه‌بندی و سطح با خطر بسیار زیاد، زیاد، متوسط، کم و بسیار کم در نقشه‌های گاما 7/0 (شکل 29)، گاما 5/0 (شکل 30) و گاما 9/0 (شکل 31) تعیین گردیدند.

شکل 29: نقشه گاما 7/0

شکل 30: نقشه گاما 5/0

شکل 31: نقشه پهنه‌بندی خطر سیلاب در حوضه زنگمار (گاما 9/0)
به دلایل عدم وجود داده‌های میدانی جهت تعیین مناسب‌ترین گام در پهنای بندی سیلاب، مقدار همبستگی بین لایه‌ای اطلاعاتی اولیه و نقشه‌های نهایی گاما 0.70 و 0.65 در نرم‌افزار ArcGIS حمست آمد. نقشه گاما 9/0 بالاترین مقدار همبستگی را با لایه‌ای اطلاعاتی اولیه داشته، بنابراین گاما 9/0 به عنوان نقشه نهایی در پهنای بندی خطر سیل خیزی انتخاب گردید (شکل 29). که بر اساس متد شکستگی‌های طبیعی در پنج سطح طبقه‌بندی شده است.

پانه‌ها و بحث

با توجه به (شکل 31) هر چه از جنوب به شمال حوضه و از پایین نیست به بالا، حوضه هر چه بزرگ قابلیت تولید روان‌بند می‌شود، که نواحی مستعد در کنار روان‌بند مطلق بر مدار آب‌ها و خط رأس‌ها با شب تند و نواحی با خطر قابلیت پایین تولید روان‌بند اغلب در دره‌ها و خط خفیف‌ها که شب کمتری دارند واقع گردیده‌اند. مشخصات مربوط به هر یک از طبقات خطر در نشته بهبودنی قابلیت تولید روان‌بند حوضه زنگمار در (جدول 1) ارائه شده است. بر اساس این جدول بسته‌بندی مربوط به نواحی با قابلیت تولید روان‌بند: متوسط و زیاد با مساحت بسته‌بندی 70/88 کیلومتر مربع (71/22 درصد) و 88/6 کیلومتر مربع (43/62 درصد) است که اغلب اقدامات مدیریتی در ارتباط با کنترل روان‌بند بر روی این مناطق صورت گرفت.

جدول 1- مشخصات نشته بهبودنی خطر سیل‌خیزی حوضه زنگمار

<table>
<thead>
<tr>
<th>رده‌ها</th>
<th>مساحت-کیلومتر مربع</th>
<th>مساحت-سمت‌های سیلخیزی</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیل‌خیزی 1</td>
<td>25/5</td>
<td>بهار کم</td>
<td>1</td>
</tr>
<tr>
<td>سیل‌خیزی 2</td>
<td>70/88</td>
<td>کم</td>
<td>2</td>
</tr>
<tr>
<td>سیل‌خیزی 3</td>
<td>70/71</td>
<td>متوسط</td>
<td>3</td>
</tr>
<tr>
<td>سیل‌خیزی 4</td>
<td>80/6</td>
<td>زیاد</td>
<td>4</td>
</tr>
<tr>
<td>سیل‌خیزی 5</td>
<td>623</td>
<td>بهار زیاد</td>
<td>5</td>
</tr>
<tr>
<td>مجموع</td>
<td>3120/4</td>
<td>مجموع</td>
<td>100</td>
</tr>
</tbody>
</table>

بنابراین جهت تعیین تاثیر هریک از پارامترها در سیل‌خیزی، نشته نهایی خطر سیل‌خیزی با هر یک از پارامترها حمیشه‌ای شد و نتایج حاصل از این همبستگی در (جدول 2) ارائه شده است.
جدول 2- جمع‌بندی نتایج همبستگی هر یک از لاپاره با نشانه به‌هم‌بندی سیل‌خیزی

<table>
<thead>
<tr>
<th>شیب</th>
<th>درصد (درصد)</th>
<th>مراکز مطلق سیل‌خیز (درصد)</th>
<th>مصاطب (درصد)</th>
<th>مصاطب (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیب 1</td>
<td>1</td>
<td>0/86</td>
<td>30/72</td>
<td>0/88</td>
</tr>
<tr>
<td>انحکام پرتویل</td>
<td>2</td>
<td>0/84</td>
<td>30/70</td>
<td>0/98</td>
</tr>
<tr>
<td>انحکام پلای متریک</td>
<td>3</td>
<td>0/82</td>
<td>50/75</td>
<td>0/39</td>
</tr>
<tr>
<td>سطح و حالت سیل‌خیز</td>
<td>4</td>
<td>0/79</td>
<td>100/100</td>
<td>78/36</td>
</tr>
<tr>
<td>بارش</td>
<td>5</td>
<td>0/76</td>
<td>100/100</td>
<td>37/8</td>
</tr>
<tr>
<td>تراکم 0/1</td>
<td>6</td>
<td>0/74</td>
<td>100/100</td>
<td>1/7</td>
</tr>
<tr>
<td>تراکم 8/10</td>
<td>7</td>
<td>0/72</td>
<td>100/100</td>
<td>0/1</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0/70</td>
<td>100/100</td>
<td></td>
</tr>
<tr>
<td>مخروط‌های سگ‌پرده دار</td>
<td>9</td>
<td>0/68</td>
<td>100/100</td>
<td></td>
</tr>
<tr>
<td>کلاه‌سولچهک</td>
<td>10</td>
<td>0/66</td>
<td>100/100</td>
<td></td>
</tr>
<tr>
<td>اراضی پست و شور‌خستهای سیل‌خیز</td>
<td>11</td>
<td>0/64</td>
<td>100/100</td>
<td></td>
</tr>
<tr>
<td>کاربری اراضی</td>
<td>12</td>
<td>0/62</td>
<td>100/100</td>
<td></td>
</tr>
<tr>
<td>شاخص NDVI</td>
<td>13</td>
<td>0/60</td>
<td>100/100</td>
<td></td>
</tr>
</tbody>
</table>

نتایج حاصل از همبستگی نقشه به‌هم‌بندی خطر سیل‌خیزی با هر یک از پارامترها نشان داد که مناطق سیل خیز‌وحش منطقه بر دامنه‌های محدب و سینگ‌های و خط اراضی سیل‌خیز، در حدود 70 درصد کاهش می‌یابد. در این مناطق آبگیر ارتقای بین 80 تا 1200 متر و شیب بین 0 تا 70 درصد همچنین به‌بینی بین 400 تا 550 میلی‌متر دارد. تراکم زهکشین این به‌بینی در بیشتر موارد بین 0/8 تا 0/17 است. از لحاظ لیتوژنیکی و خاک‌شناختی، از نظر سگ‌های می‌باشد که اغلب نواحی کوهستانی با شیب زیاد در منطقه از این سگ‌ها تشکیل شده است. به‌هم‌بندی موثر در تولید رواناب با شاخص NDVI بین 99 تا 130 و اغلب در نواحی کوهستانی می‌باشد. در‌های با دامنه‌های مفووع کم‌ترین سطوح در ایجاد رواناب در حوضه می‌باشد. اگر سطوح اغلب شیبی بین 30 تا 45 درصد و بارشی بین 75 تا 200 میلی‌متر دارند تراکم زهکشین این محدوده در بیشتر موارد بین 0/7 تا 0/2 است و از لحاظ لیتوژنیکی مشکل از ریسیاب‌های رود ارس و در نظر خاک‌شناختی، دارای خاک‌گیاه سل می‌باشد. اگر سطوح اغلب دشت‌های سیل‌خیز و با شاخص NDVI بین 131 تا 179 می‌باشد. نتایج حاصل از اجرای مدل فازی نشان داد که مدل فازی دارای قابلیت بالا در کاریابی تأیید در به‌هم‌بندی سیل‌خیزی می‌باشد. لذا از این مدل می‌توان برای مدل‌سازی در زمان‌های قطعیت و صراحت در مسائل طبیعی واقعی نظر در دسترس بودن داده‌ها و اطلاعات دقیق شناسایی استفاده کرده.
References

- Amirahmadi, A., Behniafar, A., Ebrahimi, M., (2012), "Microzonation of flood risk in sabzevar suburb with the aim of sustainable urban development, environmental based territorial planning", Amayesh, 16: 17-32. [In persian].
- Dadrasisabzevari, A., (2009), "Camparing fuzzy logic model with other concept models of compatible GIS development in locating of flood spread suitable areas with application of Satellite Information Sensor Etm", In proceedings of Conference of Geomatics, 12-13 May, Tehran: National Cartographic Center.[In persian].
- Alaiteitaleghani, M., Homayouni, S., (2009), "The zoning of the dinor basin in terms of flood production based on geomorphologic components", Geography and Environmental Sustainability, 1: 37-49. [In persian].
- Farajzadehasl, M., (2013), "Investigating the risk of flooding in the sub-basins of West Azarbaijan province", Journal of Quantitative Geomorphology Research, 1: 59-68. [In persian].
- Qomioily, F., Sadeghian, M. S., Javid, A. H., Mirbagheri A, (2010), "Flood zoning simulation using HEC-RAS model (Case study: Karun River, between Qir Dam and Ahwaz), Science and Technology of Natural Resources, 1: 105-115. [In persian].
کارایی مدل فازی در پتانسیل سیل خیزی حوضه زنگمار