[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 19, Issue 65 (6-2019) ::
جغرافیایی 2019, 19(65): 171-189 Back to browse issues page
Monitoring and modeling changes of forest area using logistic regression-markov and geomod
Vahid Nasiri1 , Ali.A Darvishsefat * 1, Anoshirvan Shirvani1 , Mohammad Avatefi hemat1
1- tehean universty
Abstract:   (5391 Views)

Abstract

Detecting land use, land cover changes and recognizing effective factors is necessary to prevent land use changes and better management. The aim of this study was detecting changes of Arasbaran forest cover in two periods of 12 years, modeling and predicting forest cover destruction in this region. At first, the multi temporal Landsat 5 images in 1990, ETM+ Landsat 7 in 2002 and OLI Landsat 8 in 2014 were provided and were classified in two categories including high dense forest, low dense forest. Forest changes were detected in three periods, 1990-2002, 2002-2014, and 1990-2014, also changes in forest cover were estimated in different classes of variables influencing changes. Forest area changes in the study period were modeled by logistic regression models and Geomod. In order to compare the performance of these two models in predicting land uses status by preparing maps in 2014 and validating by real map of that year. Results showed that in the period of 24 years, 992 and 1592 hectares of high and low dense forests were degraded during 1990-2014, respectively. The results of decreasing forest cover modeling showed that variables such as distances from roads and residential, elevation and slope has a direct relation with forest degradation. However, there is an inverse relation between forest degradation and distance from forest variables. The validation result of forest cover maps which is predicted in 2014 show total accuracy and kappa coefficient is 96.8 and 0.9342, for logistic regression map and 96.4 and 0.9269 for Geomod map respectively. These results indicated that model had a good performance in predicting of land use changes. Finally, using the logistic regression and Geomod, forest cover changes predicted for 2025. The result of predicting showed that the forest cover will degradeted 3.9% in the next 10 years.

Keywords: Detecting forest changes, satellite images, logistic regression, Geomod model, predicting land use changes.
Full-Text [PDF 1028 kb]   (1113 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/12/20 | Accepted: 2017/10/25 | Published: 2019/06/15
References
1. رفرنس های متنی مثل خروجی کراس رف را در اینجا وارد کرده و تایید کنید - Aguilera, F., Valenzuela, L. M., Leitao, A. N., (2011), "Landscape metrics in the analysis of urban land use patterns (A case study in a Spanish metropolitan area)", Journal of landscape and urban planning, 99: 226-238. [DOI:10.1016/j.landurbplan.2010.10.004]
2. Amini, M. R., Shataee, Sh., Ghazanfari, H. O., Moaieri, M. H., (2008), "Changes in Zagros's forests extension using aerial photos and satellite imagery (Case study, Armerdeh forests of Baneh)", Journal of Agriculture Science and Natural Resources, 15 (2): 1-12. [In Persian].
3. Araya, Y. H., Cabral, P., (2010), "Analysis and modeling of urban land cover change in Setúbal and Sesimbra from Portugal", Remote Sensing, 2: 1549-1563. [DOI:10.3390/rs2061549]
4. Basse, R. M., Omrani, H., Charif, O., Gerber, P., Bodis, C., (2014), "Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale", Applied Geography, 53: 160-171. [DOI:10.1016/j.apgeog.2014.06.016]
5. Baynard, C. W., (2013), "Remote sensing applications: Beyond land-use and land-cover change", Remote Sensing, 2: 228-241. [DOI:10.4236/ars.2013.23025]
6. Chenglin, X., Huang, B., Claramunt, C., Chandramouli, M., (2009), "Spatial logistic regression and GIS to model rural-urban land conversion", Journal of Geographical Information Science, 10: 1-27.
7. Darvishsefat, A. A., (2006), "Atlas of protected areas of Iran", Tehran: University of Tehran press.
8. Easteman, J. R., (2009), "IDRISI Taiga guide to GIS and image processing", Clark University, Worcester.
9. Echeveria, C., Coomesc, D. A., Halld, M., Newtone, C., (2008), "Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile", Ecological Modelling, 212 (3): 439-449. [DOI:10.1016/j.ecolmodel.2007.10.045]
10. Hall, M., (2006), "Modeling deforestation baselines using GEOMOD for the Calakmul and Meseta Purépecha regions in Mexico", Geographic Modeling Services, 42: 1-66.
11. Hegazy, I. R., Kaloop, M. R., (2015), "Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt", International Journal of Sustainable Built Environment, 70 (4): 117-124. [DOI:10.1016/j.ijsbe.2015.02.005]
12. Huang, C., Yang, H., Yunmei, L., Zou, J., Zhan, Y., Chen, X., Yin, M., Zhang, M., (2015), "Investigating changes in land use cover and associated environmental parameters in Taihu lake in recent decades using remote sensing and geochemistry", Plos One, 10: 1-16. [DOI:10.1371/journal.pone.0120319]
13. Jun, J.W., (2008), "Land use changes: Economic, social, and environmental Impacts", A publication of the Agricultural & Applied Economics Association, 23 (4): 6-12.
14. Mayes, M., Spiota, E. M., Syzmanski, L., Erdogan, M. A., Ozdogan, M., Clayton, M., (2014), "Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey", Geoderma, 25: 232-234. [DOI:10.1016/j.geoderma.2014.06.002]
15. Landau, S., Everitt, B., (2003), "A handbook of statistical analyses using SPSS", A CRC Press Company. [DOI:10.1201/9780203009765]
16. Mishra, V. N., Rai, P. K., Mohan, K., (2014), "Prediction of land use changes based on land change modeler (LCM) using remote sensing, a case study of MUZAFFARPUR (BIHAR), INDIA", Original Scientific Paper, 64 (1): 111-127. [DOI:10.2298/IJGI1401111M]
17. Mialhe, F., Gunnel, Y., Ignacio, F. A., Delbart, N., Ogania, J., Henry, S., (2015), "Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: Showcase from a remote forest catchment on Mindanao, Philippines", International Journal of Applied Earth Observation and Geoinformation, 36 (2015): 69-82. [DOI:10.1016/j.jag.2014.11.007]
18. Moreno, J. L., Zabalza, J., Serrano, V. S. M., Revueltu, J., Gilabberte, M., Molina, C., Tejeda, E. M., Ruiz, J. M., Tague, C., (2014), "Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragón River", Science of the Total Environment, 493:1222-1231. [DOI:10.1016/j.scitotenv.2013.09.031]
19. Mossivand, A. M., Ghorbani, A., Behjou, F. K., (2018), "Land use/cover change detection using Landsat and IRS imagery: A case study, Khalkhal County", Journal of geography space, 60 (17): 101-116. [In Persian].
20. Olmedo, M. T. C., Pontius, R. G., Paegelow, M., Mas, J. F., (2015), "Comparison of simulation models in terms of quantity and allocation of land change", Environmental Modelling & Software, 69: 214-221. [DOI:10.1016/j.envsoft.2015.03.003]
21. Pontius, R. G., Chen, H., (2006), "Geomod modeling", Clark University press.
22. Rasuly, A., Naghdifar, R., Rasoli, M., (2010), "Detecting of Arasbaran forest changes applying image processing procedures and GIS techniques", Procedia of Environmental Sciences, 2: 454-464. [DOI:10.1016/j.proenv.2010.10.050]
23. Sang, L., Zhang, C., Yang, J., Zhu, D., Yun, W., (2011), "Simulation of land use spatial pattern of towns and villages based on CA-Markov model", Mathematical and Computer Modelling, 54: 938-943. [DOI:10.1016/j.mcm.2010.11.019]
24. Serra, P., Pons, X., Sauri, D., (2008), "Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors", Applied Geography, 28: 189-209. [DOI:10.1016/j.apgeog.2008.02.001]
25. Taheri Abkenar, K., Peyelvar, B., (2008), "Forestry", Rasht: Rasht Haghshenas publication, 298p. [In Persian].
26. Taleshi, M., Afrakhte, H., Sheikhaninejad, G., (2018), "Monitoring and simulation of land cover pattern in rural areas of East Guilan using Markov chain model & cellular automata", Journal of geography space, 61 (18): 295-316. [In Persian].
27. Vafaei, S., Darvishsefat, A. A., Pir Bavaghar, M., (2013), "Monitoring and predicting land use changes using LCM module (Case study: Marivan region)", Iranian Journal of Forest, 5 (3): 323-336. [In Persian].
28. Valdivieso, F. O., Sendra, J. B., (2010), "Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling", Journal of Hydrology, 395: 256-263. [DOI:10.1016/j.jhydrol.2010.10.033]
29. Wyman, M. S., Stein, V. T., (2010), "Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize", Applied Geography, 30: 329-342. [DOI:10.1016/j.apgeog.2009.10.001]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

nasiri V, Darvishsefat A, Shirvani A, Avatefi hemat M. Monitoring and modeling changes of forest area using logistic regression-markov and geomod. جغرافیایی 2019; 19 (65) :171-189
URL: http://geographical-space.iau-ahar.ac.ir/article-1-2734-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 65 (6-2019) Back to browse issues page
فضای جغرافیایی Geographic Space
Persian site map - English site map - Created in 0.18 seconds with 37 queries by YEKTAWEB 4657